

Towards general-purpose simulation platform for superfluid fermions across BCS-BEC crossover

Gabriel Wlazłowski

Warsaw University of Technology University of Washington

SCIENCE CENTRE

Quantum Transport with ultracold atoms, 29 Aug. - 2 Sep. 2022

POLAND

General purpose method \rightarrow wide range of applicability

→ typically it has numerical complexity at most as a mean-field method (example for BECs: Gross-Pitaevskii equation)

Specialized methods → devoted to specific problems / quantities
 → typically ab initio methods like QMC, ...

PHYSICS.WUT

diatomic molecules

strongly interacting pairs

Cooper pairs

Gross-Pitaevski equation (GPE): $n^{1/3}a_{dd} \ll 1$

$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = \begin{pmatrix} -\frac{\hbar^2}{2M} \nabla^2 + V_{\rm trap} + g |\psi(\vec{r},t)|^2 \end{pmatrix} \psi(\vec{r},t)$$

mass of dimer
= 2m Depends on
dimer-dimer
scattering
length $a_{\rm dd}$

Numerical complexity: N logN <

Methods BEC	\rightarrow BCS
diatomic molecules strongly interactin	g pairs Cooper pairs
$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_{\eta}(\mathbf{r},t)\\v_{\eta}(\mathbf{r},t)\end{pmatrix} = \mathcal{H}_{\mathrm{BdG}}\begin{pmatrix}u_{\eta}(\mathbf{r},t)\\v_{\eta}(\mathbf{r},t)\end{pmatrix}$	Bogoliubov-de Gennes equations (BdG): $ k_Fa \ll 1, k_F = (3\pi^2 n)^{1/3}$
$\mathcal{H}_{\rm BdG} = \begin{pmatrix} h_{\uparrow}(\mathbf{r},t) - \mu_{\uparrow} & \Delta(\mathbf{r},t) \\ \Delta^{*}(\mathbf{r},t) & -h_{\downarrow}^{*}(\mathbf{r},t) + \mu_{\downarrow} \end{pmatrix}$	amplitude probability hole particle
$h_{\sigma}(\mathbf{r},t) = -\hbar^2 \nabla^2 / 2m + V_{\sigma}(\mathbf{r},t)$ Single particle hamiltonian	$\varphi_{\eta}(\boldsymbol{r},t) = [u_{\eta}(\boldsymbol{r},t), v_{\eta}(\boldsymbol{r},t)]^{T}$
$\Delta({\bf r},t) = g\nu({\bf r},t) \begin{array}{l} \mbox{Pairing potential} \\ \mbox{(order parameter)} \end{array} g = 4\pi\hbar^2 a/m \end{array}$	$\int arphi_{\eta}^{\dagger}(oldsymbol{r},t) arphi_{\eta'}(oldsymbol{r},t) d^{3}oldsymbol{r} = \delta_{\eta,\eta'}$
$\nu(\mathbf{r},t) = \frac{1}{2} \sum u_m \star(\mathbf{r},t) v^* \star(\mathbf{r},t) \left(f_\beta(-E_m) - f_\beta(E_m) \right)$	Pauli exclusion principle
Anomalous density $2\sum_{ E_{\eta} < E_{c}} a_{\eta, +}(z, v) (f, p) (z, q) (f, p) (f, p) (f, q) (f$	Numerical complexity: N*(N logN)

BdG theory vs experiment

Experiments:

- DFT is in principle exact theory Hohenberg-Kohn theorem (1964) implies that $\langle O \rangle = \langle \Psi[\rho] | O | \Psi[\rho] \rangle = O[\rho]$
- ... solving Schrödinger equation \leftrightarrow minimization of the energy density $E[\rho]$...

PHYSICS WUT

- ... however no mathematical recipe how to construct $E[\rho]$.
- In practice we postulate the functional form dimensional arguments, renormalizability, Galilean invariance, and symmetries
- DFT allows to include "beyond mean-field" effects, while keeping the numerical cost similar to mean-field method (here mean-field=BdG)

total = intrinsic + couplings to external fields... $E_{tot} = E + \sum_{\sigma} \int V_{\sigma}^{(\text{ext})}(\boldsymbol{r}) n_{\sigma}(\boldsymbol{r}) d\boldsymbol{r} - \frac{1}{2} \int \left(\Delta^{(\text{ext})}(\boldsymbol{r}) v^{*}(\boldsymbol{r}) + \text{h.c.} \right) d\boldsymbol{r} + \dots$

total = intrinsic + couplings to external fields... $E_{tot} = E + \sum_{\sigma} \int V_{\sigma}^{(\text{ext})}(\boldsymbol{r}) n_{\sigma}(\boldsymbol{r}) d\boldsymbol{r} - \frac{1}{2} \int \left(\Delta^{(\text{ext})}(\boldsymbol{r}) v^{*}(\boldsymbol{r}) + \text{h.c.} \right) d\boldsymbol{r} + \dots$

PHYSICS.WUT

 \rightarrow *ab initio* cals for $E/E_{\rm FG}, \Delta/\varepsilon_F, m^*/m$

→ limiting cases (EFT, scale invariance, ...)

Functional parameters $\{A_{\lambda}, B_{\lambda}, C_{\lambda}\}$

Theoretical method

Experiment

(depending on the problem size)

can run on "small" computing clusters as well as leadership supercomputers

PHYSICS.WUT

- \rightarrow BCS-BEC crossover
- \rightarrow spin-imbalanced systems
- \rightarrow mass-imbalanced systems
- → finite temperature formalism

Ongoing extensions:

- → Bose-Fermi mixtures
- \rightarrow Fermi-Fermi mixtures (like nuclear systems: protons+neutrons)

Warsaw University W-SLDA of Technology Toolkit

http://wslda.fizyka.pw.edu.pl/

W-SLDA Toolkit

Self-consistent solver of mathematical problems which have structure formally equivalent to Bogoliubov-de Gennes equations. static problems: st-wslda

$$\begin{pmatrix} h_a(\boldsymbol{r}) - \mu_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b^*(\boldsymbol{r}) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix} = E_n \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix}$$

time-dependent problems: td-wslda

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_a(\boldsymbol{r},t)-\mu_a & \Delta(\boldsymbol{r},t)\\\Delta^*(\boldsymbol{r},t) & -h_b^*(\boldsymbol{r},t)+\mu_b\end{pmatrix}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix}$$

can run on "small" computing clusters as well as leadership supercomputers (depending on the problem size)

PHYSICS.WUT

Application #1: Fermionic Josephson Junction

MPHYSICS.WUT

Application #1: Fermionic Josephson Junction

Application #2: Vortex collisions

Inspired by LENS ⁶Li setup (G. Roati's group): [1] W. J. Kwon, et.al., Nature 600, 64-69 (2021)

b

Dissipation during the collision is reflected in $d_f/d_i < 1$.

MPHYSICS.WUT

Application #2: Vortex collisions

Inspired by LENS ⁶Li setup (G. Roati's group): [1] W. J. Kwon, et.al., Nature 600, 64-69 (2021)

b

36 ms

Dissipation during the collision is reflected in $d_f/d_i < 1$.

PHYSICS.WUT

Vortex solution: Fermi gas \rightarrow BdG

Application #2: Vortex collisions

Inspired by LENS ⁶Li setup (G. Roati's group): [1] W. J. Kwon, et.al., Nature 600, 64-69 (2021) Figs from [1]

Vortex solution: Fermi gas \rightarrow BdG

b

36 ms

(iii)

Dissipation during the collision is reflected in $d_f/d_i < 1$.

Do the internal structure of vortices contribute to the dissiption?

Prediction [M. Silaev, PRL. 108 (2012)]:

- → Andreev quasiparticles can be excited (effective increase of the vortex core temperature),
- → and eventually converted into delocalized states
- → the impact of this process gets stronger as we move towards BCS regime

MPHYSICS.WUT

PHYSICS.WUT

A. Barresi, A. Boulet, P. Magierski, G. Wlazłowski, arXiv:2207.00870

PHYSICS.WUT

 → the dissipation due to Andreev states is detected in BCS regime (it can be interpreted as effective increase of the vortex core temperature)
 → the effect is to weak to explain the experimental measurements

 \rightarrow significant sensitivity of the results to the temperature

A. Barresi, A. Boulet, P. Magierski, G. Wlazłowski, arXiv:2207.00870

SUMMARY

- Microscopic simulations across whole BCS-BEC crossover are presently feasible:
 - DFT BCS regime; SLDA strong interaction;
 - $\mathsf{GPE} \rightarrow \mathsf{BEC} \text{ regime}$
- DFT is general purpose method: it overcomes limitations of mean-field approch, while keeping numerical cost at the same level as BdG calculations.
- You do not to be expert in DFT in order to use DFT. Open-source implementation is available.
- DFT can benchmark experiments
 - Can provide insight into processes that are beyond reach of GPE-like approaches.
 - Exotic types of superfluidity (spin-imbalanced, massimbalanced...).

Collaborators: P. Magierski, M. Tylutki, A. Barresi, A. Boulet (WUT); M. Forbes (WSU); A. Bulgac (UW); K. Xhani (LENS); N. Proukakis (Newcastle U.)

Contact: gabriel.wlazlowski@pw.edu.pl http://wlazlowski.fizyka.pw.edu.pl

Appendix

Energy

Energy is computed from the formula:

$$E = \int \mathcal{E}_{ ext{edf}}(n,
u,\ldots) \, d^3r + \sum_\sigma \int V^{(ext{ext})}_\sigma(r) n_\sigma(r) \, d^3r
onumber \ -rac{1}{2} \int \left(\Delta^{(ext{ext})}(r)
u^*(r) + ext{h.c.}
ight) d^3r - \sum_\sigma \int ec v^{(ext{ext})}_\sigma(r) \cdot ec j_\sigma(r) \, d^3r$$

The intrinsic energy is assumed to have a generic structure:

$$E_{
m edf} = \int \mathcal{E}_{
m edf} \, d^3r = \int \left(\mathcal{E}_{
m kin} + \mathcal{E}_{
m pot} + \mathcal{E}_{
m pair} + \mathcal{E}_{
m curr}
ight) d^3r$$

PHYSICS.WUT

Potentials

Minimization of the functional with respect to quasiparticle orbitals provides Bogoliubov-de Gennes type equations. Its general form is:

$$egin{pmatrix} h_\uparrow(r) & \Delta(r) + \Delta_{ ext{ext}}(r) \ \Delta^*(r) + \Delta^*_{ ext{ext}}(r) & -h^*_\downarrow(r) \end{pmatrix} egin{pmatrix} u_{n\uparrow}(r) \ v_{n\downarrow}(r) \end{pmatrix} = E_n egin{pmatrix} u_{n\uparrow}(r) \ v_{n\downarrow}(r) \end{pmatrix}$$

where single particle hamiltonian is given by

$$h_{\sigma} = -rac{1}{2}ec{
abla}lpha_{\sigma}(r)ec{
abla} + V_{\sigma}(r) - \left(\mu_{\sigma} - V^{(ext{ext})}_{\sigma}(r)
ight) - rac{i}{2}\left\{ec{A}_{\sigma}(r) - ec{v}^{(ext{ext})}_{\sigma}(r), ec{
abla}
ight\}$$

Potentials entering the hamiltonian are:

- alpha_a and alpha_b : $lpha_\sigma=2rac{\delta \mathcal{E}_{
 m edf}}{\delta au_\sigma}$ -- effective mass,
- v_a and v_b : $V_{\sigma} = \frac{\delta \mathcal{E}_{\mathrm{edf}}}{\delta n_{\sigma}}$ -- mean-field potential,

• A_a_x, A_a_y, A_a_z, A_b_x, A_b_z, and A_b_z:
$$\vec{A}_{\sigma} = \frac{\delta \mathcal{E}_{\rm edf}}{\delta \vec{j}_{\sigma}} - \text{current potential},$$

• delta:

$$\Delta(r) = -rac{\delta \mathcal{E}_{ ext{edf}}}{\delta
u^*}$$
 -- paring potential.

Densities

Densities are computed according to formulas:

• nu :
$$u(r) = rac{1}{2} \sum_{|E_n| < E_c} u_{n,\uparrow}(r) v^*_{n,\downarrow}(r) (f_eta(-E_n) - f_eta(E_n))$$

• rho_a:

$$n_{\uparrow}(r) = \sum_{|E_n| < E_c} |u_{n,\uparrow}(r)|^2 f_{eta}(E_n)$$

• rho_b:

$$n_{\downarrow}(r) = \sum_{|E_n| < E_c} |v_{n,\downarrow}(r)|^2 f_{eta}(-E_n)$$

• tau_a:

$$au_{\uparrow}(r) = \sum_{|E_n| < E_c} |
abla u_{n,\uparrow}(r)|^2 f_{eta}(E_n)$$

• tau_b:

$$au_{\downarrow}(r) = \sum_{|E_n| < E_c} |
abla v_{n,\downarrow}(r)|^2 f_{eta}(-E_n)$$

• j_a_x , j_a_y , j_a_z : $ec{j}_{\uparrow\uparrow}(r) = -\sum_{|E_n| < E_c} \mathrm{Im}[u_{n,\uparrow}(r)
abla u_{n,\uparrow}^*(r)] f_eta(E_n)$

• j_b_x , j_b_y , j_b_z :
$$ec{j}_{\downarrow}(r) = \sum_{|E_n| < E_c} \operatorname{Im}[v_{n,\downarrow}(r)
abla v_{n,\downarrow}^*(r)] f_{\beta}(-E_n)$$

In these formulas E_n denotes quasi-particle energy, and E_c is the energy cut-off scale. Fermi distribution function $f_{\beta}(E) = 1/(\exp(\beta E) + 1)$ is introduced to model temperature $T = 1/\beta$ effects.

phase difference, which are used as primary probes in experiments, display **similar patterns irrespectively of the operating dissipation mechanism** $E_{\rm BCS} = E_{\rm FG} - \frac{3|\Delta|^2}{8\varepsilon_F}N$

PHYSICS.WUT

G. Wlazłowski, K. Xhani, M. Tylutki, N. Proukakis, M. Magierski., arXiv:2207.06059

PHYSICS.WUT

 \rightarrow the dissipation due to Andreev states is detected in BCS regime

(it can be interpreted as effective increase of the vortex core temperature)

- \rightarrow the effect is to weak to explain the experimental measurements
- \rightarrow significant sensitivity of the results to the temperature

A. Barresi, A. Boulet, P. Magierski, G. Wlazłowski, arXiv:2207.00870

Towards quantum turbulence in strongly interacting Fermi gas

The GPE energy density $gn_D^2/2$ is replaced by the UFG energy density $\xi \mathcal{E}_{FG}(n_F)$:

$$ie^{i\eta}\dot{\Psi} = \left(\frac{-\hbar^2\nabla^2}{4m} + 2(\xi\mathcal{E}'_{FG}(n_F) + V - \mu_F) + \Omega\hat{L}_z\right)\Psi$$

GPE can be tuned to give the same qualitative features, however, the dissipation parameter $\eta \approx 0.01-0.02$ must be tuned appropriately.

 \rightarrow noticeable differences in energy transfers between GPE and TDSLDA

Theory vs Experiment (unitary regime)

sim: J. Kopyciński, et.al., Phys. Rev. A 104, 053322 (2021) exp: M. W. Zwierlein, et.al., Science (80). 311, 492 (2006).

Fig. 4.9: Comparison between the experimental absorption images (exp) of rotating Fermi gas clouds and the simulated densities n(x,y, z = 0) (sim) for a rotating system, separately for the majority $|\uparrow\rangle$ and minority $|\downarrow\rangle$ components and different population imbalances δ . Experimental data source: [12].

Take image

5ICS.WUT

Ramp to BEC

Experiment

Prepare the system