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Theory Experiment

Computational physics

General purpose method → wide range of applicability
→ typically it has numerical complexity at most as a mean-field method
     (example for BECs: Gross-Pitaevskii equation)

Specialized methods → devoted to specific problems / quantities
→ typically ab initio methods like QMC, ...

Overview:
1. Method → DFT*
2. Implementation
3. Applications
4. Extensions to other systems

(*) Note: Many formal 
aspects of the theory will be 
presented superficially. 
Only general formulas...
 



Condensate

Bosons Fermions

Mean-field perspective

External potential + mean-field (due to interactions)



Bosons

Mean-field perspective

Classification taken 
from book by Griffin, 
Nikuni, Zaremba

In scientific jargon frequently:
mean-field for bosons = GP

and
beyond mean-field = BdG or HFB



Fermions

Mean-field perspective

 No “GP level” – due to Pauli principle

● Static HFB (or BdG)
● Time-dependent HFB (or TDBdG)
● …



Fermions

Mean-field perspective

 No “GP level” – due to Pauli principle

● Static HFB (or BdG)
● Time-dependent HFB (or TDBdG)
● …

HFB – main concept
Quasi-particles – mixtures of 
particles and holes

Many-body wave function is 
approximated by product state

define Bogoliubov transformation  
  →variational parameters

Anticommutation relations 
(fermions)

BdG → coordinate basis



Fermions

Mean-field perspective

Free Fermi gas
(normal state)

p-pF

particle

hole

BCS occupation probabilities at T=0

Exact result, by S. Tan, 
Ann. Phys. 323, 2952 (2008)

For short-range interaction 
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Regularization is needed for attractive and 
short-range interaction in 2D and 3D



Fermions

Mean-field perspective

Free Fermi gas
(normal state)

p-pF

particle

hole

BCS occupation probabilities at T=0

Exact result, by S. Tan, 
Ann. Phys. 323, 2952 (2008)

For short-range interaction 

In practical applications we consider states 
up to some energy cut-off Ec.

Typically Ec is a few times Fermi energy εF.

Number of considered states is much bigger 
than number of particles.



System: unitary Fermi gas
3D simulation on lattice 1003

number of atoms = 26,790
number of quasi-particle states = 582,898
number of PDEs = 1,165,796

PRELIMINARY:
quantum turbulence 
in the unitary Fermi gas




BCS-BEC crossover: fermions with short-range and attractive interaction

Attractive 
inter-particle 

interaction

Experiments:
~exp.

 limit
ation

Regime 
of validity
of BdG theory 

(note: BdG for uniform system = BCS theory) 



Methods

Density Functional Theory: Superfluid Local Density Approximation (SLDA)
DFT is in principle exact theory Hohenberg-Kohn theorem (1964) implies that … solving Schrödinger equation ↔ minimization of the energy density E[ρ]...… however no mathematical recipe how to construct E[ρ].In practice we postulate the functional form dimensional arguments, renormalizability, Galilean invariance, and symmetriesDFT allows to include “beyond mean-field” effects, while keeping the numerical cost similar to mean-field method (here mean-field=BdG)

`
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Richard Feynman
… physics is not mathematics and 
mathematics is not physics ...

The fact that we postulate the functional may be regarded 
as a weakness of the method... 
… however it turns out that the DFT is among the most 
popular and versatile methods available in physics. 



Alternative frameworks
Schrödinger DFT

 Derivation of Hint - “easy”

 Solving many body 
   Schrödinger equation - “hard”

 Derivation of Eint - “hard”

 Solving emerging equations
    of motion equation - “easy”



Alternative frameworks
Schrödinger DFT

 Derivation of Hint - “easy”

 Solving many body 
   Schrödinger equation - “hard”

 Derivation of Eint - “hard”

 Solving emerging equations
    of motion equation - “easy”

KS mapping

Formally rigorous way 
of approaching 
any interacting 

problem by
mapping it exactly to a 

much 
easier-to-solve 
noninteracting 

system.



SLDA-type functional

The Fermi-Dirac 
distribution function

Denisties are parametrized via 
Bogoliubov quasiparticle wave functions

Energy cut-off scale (need for regularization)

+ orthonormality condition

Additional density required by DFT 
theorem for systems with broken 
U(1) symmetry



         
For example, BdG is equivalent to            

SLDA-type functional

By construction minimization of the SLDA-
type functional leads to equations that are 
mathematically equivalent to BdG equations

m
inim

ization

Note that similar strategy is present  
in BEC community, but does not 
invoke DFT techniques. 

Example: quantum droplets
GPE → GPE + LHY correction



SLDA-type functional

Kinetic 
term

Potential 
term

Pairing
term

Dimensionless 
functional parameters

Densities
 

are defined via

Center of 
mass motion 

dimensional analysis + 
symmetries



SLDA-type functional

Kinetic 
term

Potential 
term

Pairing
term

Dimensionless 
functional parameters

BdG ASLDA
Asymmetric SLDA, a→∞

SLDAE
SLDA Extended, p=0

Densities
 

are defined via

A. Boulet, G. Wlazłowski, P. Magierski
Phys. Rev. A 106, 013306 (2022)

A. Bulgac, M.M. Forbes
Phys. Rev. A 75, 031605(R) (2007)

Center of 
mass motion 

dimensional analysis + 
symmetries

https://link.aps.org/doi/10.1103/PhysRevA.106.013306
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.031605


SLDA-type functional

Kinetic term
+∞

Pairing term
-∞

Dimensionless 
functional parameters

Densities
 

are defined via

dimensional analysis + 
symmetries

The functional is useless without 
the regularization procedure!

→ there is no unique method of regularizing the functional...
→ there are prescriptions for BdG...
→ prescription that is numerically applicable for general case was for many years a bottleneck



→ ab initio cals for
 

→ limiting cases (EFT, scale invariance, ...)
INDUCE

 Functional parameters



→ ab initio cals for
 

→ limiting cases (EFT, scale invariance, ...)
INDUCE

A. Boulet, G. Wlazłowski, P. Magierski
Phys. Rev. A 106, 013306 (2022)

SLDAE

 Functional parameters

https://link.aps.org/doi/10.1103/PhysRevA.106.013306


Towards time-dependent problems 

From point of view of DFT this step represents 
uncontrolled approximation, 
                 called adiabatic approximation 
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There exits analog of Hohenberg-Kohn theorem for time-dependent problems…… but for time-dependent case the “exact” functional is in general different from the one that is used in static calculations...



Towards time-dependent problems 

From point of view of DFT this step represents 
uncontrolled approximation, 
                 called adiabatic approximation 

There exits analog of Hohenberg-Kohn theorem for time-dependent problems…… but for time-dependent case the “exact” functional is in general different from the one that is used in static calculations...

0 
Ψ0

timet 
n(t’<t)

Adiabatic approximation

In general integro-differential equations 

…if the evolution is slow (adiabatic), then the system follows instantaneous ground state        → use the functional taken from static considerations.



Theoretical method Experiment

Computer code 



Theoretical method Experiment

http://wslda.fizyka.pw.edu.pl/ 

can be arbitrary function of 
densities

Predefined: BdG, ASLDA, SLDAE

can run on “small” computing clusters as well as leadership supercomputers
(depending on the problem size)

Computer code

http://wslda.fizyka.pw.edu.pl/


http://wslda.fizyka.pw.edu.pl/ 

can run on “small” computing clusters as well as leadership supercomputers
(depending on the problem size)

→ BCS-BEC crossover
→ spin-imbalanced systems
→ mass-imbalanced systems
→ finite temperature formalism

Ongoing extensions:
→ Bose-Fermi mixtures
→ Fermi-Fermi mixtures (like nuclear systems: protons+neutrons)

http://wslda.fizyka.pw.edu.pl/


Examples of applications of SLDA in recent years

Quantum vortices
Phys. Rev. Lett. 130, 043001 (2023)
Phys. Rev. A 106, 033322 (2022)
Phys. Rev. A 104, 053322 (2021)
Phys. Rev. A 103, L051302 (2021)

Quantum turbulence
Phys. Rev. A 105, 013304 (2022)

Spin-polarized impurities
Phys. Rev. A 100, 033613 (2019)
Phys. Rev. A 104, 033304 (2021)

Solitonic cascades
Phys. Rev. Lett. 120, 253002 (2018)

Quantum chaos
Phys. Rev. C 105, 044601 (2022)

Josephson junction
Phys. Rev. Lett. 130, 023003 (2023) 

Phase diagram of spin-imbalanced systems
arXiv:2211.01055

...



Example: Fermionic Josephson Junction
 
Inspired by LENS 6Li setup (G. Roati’s group): 
[1] G. Valtolina, et.al., Science 350, 1505, (2015); 
[2] A. Burchianti, et.al., Phys. Rev. Lett. 120, 025302 (2018); 
[3] K. Xhani, et.al., Phys. Rev. Lett. 124, 045301 (2020)

Figs from [2]

Experim
ent                              Sim

ulation

t [ms]
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Figs from [2]

Experim
ent                              Sim

ulation

UFG BCS

G. Wlazłowski, et.al., 
Phys. Rev. Lett. 130, 023003 (2023)

t [ms]



UFG BCS

 pair 
breaking is 
negligible

pair pair 
breaking!breaking!

G. Wlazłowski, K. Xhani, M. Tylutki, N. Proukakis, M. Magierski, 
Phys. Rev. Lett. 130, 023003 (2023)
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UFG BCS

G. Wlazłowski, K. Xhani, M. Tylutki, N. Proukakis, M. Magierski, 
Phys. Rev. Lett. 130, 023003 (2023)



Computational physics (modeling) 
plays a key role in the study of objects 
that are not directly accessible

Ultracold atomic gases:
→ when designing the functional, 
     we follow the same general strategies
→ we use ultracold atoms to learn 
     about predictive power of the method

Next we apply the method to 
neutrons stars. 
→ … for example, the codes that we use 
     are based on software 
     that we constructed for ultracold atoms 



From: Nicolas Chamel talk,
Buffalo, March 2016 PRC 93, 034337 (2016)



Computational physics (modeling) 
plays a key role in the study of objects 
that are not directly accessible

In the simulation box (40 fm)3 we 
have 1382 neutrons and 
             40 protons. 

Density profile
neutrons                  protons



System: nuclear matter
3D simulation 40 x 40 x 120 [fm]

number of neutrons: 2,104
number of protons: 40

PRELIMINARY:
response of nuclear impurity to 
uniform electric field




System: nuclear in presence of 
quantum vortex

Understanding of the vortex–
impurity interaction is required in 
order or understand the 
phenomenon of neutron star 
glitches.




SUMMAR Y
Microscopic simulations across whole BCS-BEC 
crossover are presently feasible: 

    DFT           BCS regime; 
   SLDA         strong interaction; 
   GPE      → BEC regime 

DFT is general purpose method: it overcomes limitations 
of mean-field approch, while keeping numerical cost at 
the same level as BdG calculations.

You do not have to be an expert in DFT to use DFT.
Open-source implementation is available. 

DFT can benchmark experiments…

… and provide insight into problems that are not directly 
accessible, like neutron stars

D
F
T
 
c
o
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Collaborators: P. Magierski, M. Tylutki, D. Pęcak, A. Barresi, A. Boulet, A. Zdanowicz (WUT); M. Forbes (WSU); A. Bulgac (UW); K. Xhani (LENS); N. Proukakis (Newcastle U.); N. Chamel (U. Bruxelles) 
 
Contact:
gabriel.wlazlowski@pw.edu.pl
http://wlazlowski.fizyka.pw.edu.pl

https://wslda.fizyka.pw.edu.pl/ 

mailto:gabriel.wlazlowski@pw.edu.pl
http://wlazlowski.fizyka.pw.edu.pl/
https://wslda.fizyka.pw.edu.pl/
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