Towards accurate modeling
of neutron star crust properties
and what we can learn
from them about the core
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Neutron star
| Observables:

- Masses g 0

-

=5 Radii (suffer from Imany systematic errors)
- EM Emiésion

PR Age _(fl:om-sizé of nebula)

5 'Gr'avi_tational waves

__ Rotation period )

(measured very accurately)

B R (listance= 400 light-years = 3.78 x 10° km
: ' ‘ size=20 km
size / distance ~ 10™ -10%



Neutron star

Observébles:

- Masses . Bk L

=5 Radii (suffer from many systematic errors)
—» EM Emission - :
YR Age _(fr.om-size of nebula) I- »

- Gravitational waves

- Rotation period

(measured very accuratel

Delayed
spin-up

Crab pulsar
Glitch: 2017 November 8

B. Shaw, et. al., MNRAS 478, 21 (2018) (C

10
Days since glitch epoch



Glitch: a sudden increase of > Glitches due to quantum vortices

the rotational frequency (P. W. Anderson and N. Itoh, Nature 256 (1975))
s Presently the standard picture
O Glitches in the Vela pulsar for pulsar glitches
# (Can explain: post-glitch relaxation,
Period (sec) year statistics of the glitching populations...
' ' ' 8 ]dea:
1975 c 1. . . .
1970 1980 > Superfluid interior contains quantized
0.8925 - vortices pinned to the crustal lattice
> Glitches are believed to occur
0.8924 - when a large number of vortices
o .3 simultaneously unpin and move outward
0.8923 - /
0.8922 - 7
0.8921 >
e Simulation of: Vortex Avalanches and
0.8920 | | ; | Collective Motion in Neutron Stars,
: . I-Kang Liu, Andrew W. Baggaley,
Time Carlo F. Barenghi, Toby S. Wood,
arXiv:2410.16878
V.B. Bhatia, A Textbook of Astronomy and Astrophysics
with Elements of Cosmology, Alpha Science, 2001.

First observed in 1969: V. Radhakrishnan and R. N. Manchester, Nature 222, 228-229 (1969);

P. E. Reichley and G. S. Downs, Nature 222, 229—-230 l969i;_|
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https://arxiv.org/abs/2410.16878
https://www.youtube.com/watch?v=dvtMr7haHQo

Density Functional Theory (DFT):
Workhorse for ...

Solid-state physics

Quantum chemistry

Condensed-matter physics

... also important tool for

Nuclear physics

(Nuclear) astrophysics

. plasma physics ...

Nature 514, 550 (2014)

APER S ... Twelve papers on the top-100 list relate
to it [DFT], including 2 of the top 10.
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Fundamentals of
Time-Dependent

Density Functional
Theory

* DFT is in principle exact theory
Hohenberg-Kohn theorem (1964) implies that <O> — (@[p]IOI\IJ[pD — O[p]

® ... solving Schrodinger equation «<» minimization of the energy density E[p]...
® ... however no mathematical recipe how to construct E[p].

* In practice we postulate the functional form
dimensional arguments, renormalizability, Galilean invariance, and symmetries

® Many extensions: time-dependent formalism, finite temperature,
normal/superconducting systems, non-relativistic/relativistic, ...

e EPHYSICS. WUT



EOS (typically from QMC) Dimensional arguments,

0 P renormalizability, Galilean

o, Frscinan-pandharpare = invariance, and symmetries
= [ __Hebeler et al. (2010) e / . .
e Toi R (translational, rotational, gauge,
S .l L | parity, ...)

Validation against
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Exp. data for nuclei /
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‘Energy Density
st/
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Brussels Skyrme functionals BSk(G)

We have fitted a series of nuclear energy-density functionals with full
HFB calculations using extended Skyrme functionals J

Experimental data/constraints:
@ ~ 2300 atomic masses (rms ~ 0.5 — 0.6 MeV/¢c?)
@ ~ 900 nuclear charge radii (rms ~ 0.03 fm)
@ symmetry energy 29 < J < 32 MeV
@ incompressibility K, = 240 + 10 MeV (giant resonances in nuclei)

Many-body ab initio calculations:
@ equation of state of pure neutron matter
@ 'S, pairing gaps in nuclear matter
@ effective masses in nuclear matter (+giant resonances in nuclei)
@ stability against spin and spin-isospin fluctuations

Slide from Nicolas Chamel’s talk,
Grams et al., Eur. Phys. J. A 59, 270 (2023) ECT* Workshops, Trento, Apr. 2024




Today's capabilities of TDDFT (with nuclear functionals)

o Density profile
In context of nuclear applications
neutrons protons

 Unconstrained dynamics in 3D, volumes reaching V=(120 fm)? N
* Protons and neutrons as (dynamical) degrees of freedom , ,
* Systems consisting of tens of thousands of particles — zu:
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Limitations of the presented framework
L . Neutron star
 Non-relativistic description [v:(0.08fm?)=28% of c]
1 crust
* S-wave superfluidity
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5 Fig from:
0.00 Nuclear pasta? D. Ding, A. Rios, H. Dussan, W. H. Dickhoff,
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Crust density p [fm=] Phys. Rev. C 94, 025802 (2016)
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Functionalities Download Gallery Publications and Materials Related projects Info

\Varsaw University | \V-GLDA Toolkit
of Technology | \V-13$k Toolkit

static problems: st-wslda

W-SLDA Toolkit ha(r) = pa A7) ) (un(?“)) _B (H-n(f’))

(r) —h?j (7') + b '”n(r) ”n('r)
Self-consistent solver

of mathematical problems
which have structure

time-dependent problems: td-wslda

formally equivalent to 50 O (un(r.t)\ [ ha(r.t) = pa A(r,t) Un(r,t)
ogoliubov-de Gennes equations. (e )] A* —h*(r. 1 (ot

B ot \va(r,1) (rt)  —hi(rt) + ) \walr,0)
Extension to nuclear matter . . Integration with VisIt:
in neutron stars Extens"on to nuc"ear ma‘tter DL neutron Stars visualization, animation and

The W-SLDA Toolkit has been expanded to encompass nuclear systems, now analysis tool
Crvstalline available as the W-BSk Toolkit.

Unified solvers for static and Mantle d Speed-up calculations by

time-dependent problems exploiting High Performance

Computing

D. Pecak, A. Zdanowicz, N. Chamel, P. Magierski,
G. Wlaztowski, Phys. Rev. X 14, 041054 (2024)

Superfluid
Neutron
Liquid

Dimensionalities of
problems: 3D, 2D and 1D

Functionals for studies of
BCS and unitary regimes

can run on “small” computing clusters as well as leadership supercomputers
(depending on the problem size)

AMDZ1

|I;|igh @Z/
erformance
Computing nvoa. ROCm open source

CUDA
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http://wslda.fizyka.pw.edu.pl/
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order or understand the

System: nuclear in presence of
quantum vortex

Understanding of the vortex—
impurity interaction is required in

phenomenon of neutron star

0.8921 ¢

glitches.
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Time

V.B. Bhatia, A Textbook of Astronomy and Astrophysics
with Elements of Cosmology, Alpha Science, 2001.
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Providing microscopic inputs for mesoscopic models...

<V

ext crit
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Providing microscopic inputs for mesoscopic models...
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Providing microscopic inputs for mesoscopic models...
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Getting knowledge about the core by constraining the crust...

Rotation
4 frequency maximum glitch Observed relative sizes of glitches:
amp[ituc[e AV/V ~ 10—11 _ 10—5
/
2 Ry
T 3
= drr” fp(r)
7 h ‘ O N
quantum of circulation / pinning force

(force needed to move a vortex
through the medium with
‘impurities”)

moment of inertia

Result is weakly sensitive to various
assumptions of a model...

* P. Pizzochero, M. Antonelli, B. Haskell, S. Seveso, Nature Astronomy 1, 0134 (2017)
* M. Antonelli, P. Pizzochero, Journal of Physics: Conf. Series 861 (2017) 012024
* M. Antonelli, A. Montoli, P. M. Pizzochero, MNRAS 475, 5403 (2018)

e EPHYSICS. WUT



Getting knowledge about the core by constraining the crust...

Rotation
4 frequency maximum glitch Observed relative sizes of glitches:
amplitude Av/v ~ 10711 — 1073
: > /R
s d 3
= 3 drr° fp(r)
v F': p Rcrust \
quantum of circulation R / Assumption.: on[y crust
o contributes
moment of inertia
/ (no superfluidity in the
core)

Can we get the observed glitch sizes by assuming that only the crust is superfluid?
— needed reliable (at quantitative level) calculations for the crust

* P. Pizzochero, M. Antonelli, B. Haskell, S. Seveso, Nature Astronomy 1, 0134 (2017)
* M. Antonelli, P. Pizzochero, Journal of Physics: Conf. Series 861 (2017) 012024
* M. Antonelli, A. Montoli, P. M. Pizzochero, MNRAS 475, 5403 (2018)
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S ‘ZZMM‘J(Q’ Feedback/mprovement of the theory iR

1. Construction /
Implementation of a
framework for
modeling of
fermionic superfluids

2. Applications
of the framework
to ultracold
atomic gases.

@ Ultracold Fermi gases and neutron matter share a lot of
similarities. UFG regime can be used as a benchmark
platform for testing the predictive power of many-body
techniques, which are subsequently used for neutron star
studies.

V.:;\Iwiwcrjuérl-t'iﬁhﬂlbféepfhhdferris"tﬂarlﬂrrlaiirrlg

] ] of dissipative phenomena

@ (TD)DFT is general purpose framework: it overcomes
limitations of mean-field approach, while keeping numerical

cost at the same level as (TD)HFB calculations.

3. Transferring
of the methods/
knowledge to
neutron stars
community

@ For problems that have been (so far) contrasted with

experimental measurements: Predictions by functionals for O
ultracold Fermi gases (SLDA), created within similar :.' Sonaind

(neutrons}
methodology as for nuclear systems, are at least at the tel

qualitative level in agreement with the measurements, ... in

many cases, good quantitative agreement is obtained. -
@ (TD)DFT and its implementations reached the level of
maturity that allows for providing predictions for large and
complex systems: neutron star's crust structure and its |
dynamics, transport coefficients, ... ' . core

WUT Group: P. Magierski, G. Wlazlowski, D. Pecak, M. Tylutki,
A. Barresi, E. Alba, V. Allard A. Zdanowicz,

M. Shwmskl D. Lazarou A. Makowskl ©

In collboration with: N. Chamel (U. Bruxelles) : Ewsilidoe
SSgpen‘lugi {Teu:(;nsJ + , ‘A_}J

) ) . . o Vortex uperconductor (protons [
gabrlelwlazlowskl@pwedupl httpS//WSldaflzykapWEdUp|/ N h;f;gnne;m L_)/

http://wlazlowski.fizyka.pw.edu.pl flux tube

Ny



mailto:gabriel.wlazlowski@pw.edu.pl
http://wlazlowski.fizyka.pw.edu.pl/
https://wslda.fizyka.pw.edu.pl/

NONEQUILIBRIUM PHENOMENA IN
SUPERFLUID SYSTEMS: ATOMIC
NUCLEI, LIQUID HELIUM,
ULTRACOLD GASES, AND NEUTRON

STARS

12 May 2025 — 16 May 2025
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