

Vortices in Bose and Fermi superfluids: similarities and differences

Gabriel Wlazłowski

Warsaw University of Technology University of Washington

ATI POLAND COST Action CA23134 webinar, 25-04-2025

=600

Microscopic properties of quantum vortices across BCS-BEC crossover

all...

Quantization of circulation

$$\oint_C \mathbf{v}_s \cdot d\mathbf{l} = \kappa = \frac{h}{m}n$$

... for straight vortex line it implies

diatomic molecules

Bound states are created: dimers. Effective dimer-dimer interaction is weak.

strongly interacting pairs

Strong attraction: Cooper pairs become comparable in size with the interparticle distance. Cooper pairs

Weak attraction induces correlations: Cooper pairs

FIG. 36 Vortex lattice in a rotating gas of ⁶Li precisely at the Feshbach resonance and on the BEC and BCS side. Reprinted with permission from Zwierlein *et al.* (2005).

Source: M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Nature 435, 1047 (2005).

length a_{dd}

Gross- Pitaevskii equation (GPE): $n^{1/3}a_{\rm dd} {<} {<} 1$

The nonlinear Schrodinger equation is regarded as the one that captures quantum vortex properties at the microscopic level.

Gross- Pitaevskii equation (GPE): $n^{1/3}a_{dd}^{-1/3} < 1$

$$i\hbar\frac{\partial\psi(\vec{r},t)}{\partial t} = \left(-\frac{\hbar^2}{2M}\nabla^2 + V_{\rm trap} + g|\psi(\vec{r},t)|^2\right)\psi(\vec{r},t)$$

$$n(\mathbf{r}) = |\psi(\mathbf{r})|^2 \rightarrow \psi(\mathbf{r}) = \sqrt{n(\mathbf{r})}e^{i\phi(\mathbf{r})}$$

$$j(\mathbf{r}) = \frac{\hbar}{2Mi} (\psi^*(\mathbf{r})\nabla\psi(\mathbf{r}) - \psi(\mathbf{r})\nabla\psi^*(\mathbf{r}))$$
$$= n(\mathbf{r})\frac{\hbar}{M}\nabla\phi(\mathbf{r}) = n(\mathbf{r})\mathbf{v}_s(\mathbf{r})$$

The nonlinear Schrodinger equation is regarded as the one that captures quantum vortex properties at the microscopic level.

Definition of the superfluid velocity

$$\boldsymbol{v}_{s}(\boldsymbol{r}) = \frac{\hbar}{M} \nabla \phi(\boldsymbol{r})$$

$$BEC \longleftarrow BCS$$

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_{\eta}(\mathbf{r},t) \\ v_{\eta}(\mathbf{r},t) \end{pmatrix} = \mathcal{H}_{BdG} \begin{pmatrix} u_{\eta}(\mathbf{r},t) \\ v_{\eta}(\mathbf{r},t) \end{pmatrix}$$

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_{\eta}(\mathbf{r},t) \\ v_{\eta}(\mathbf{r},t) \end{pmatrix} = \mathcal{H}_{BdG} \begin{pmatrix} u_{\eta}(\mathbf{r},t) \\ v_{\eta}(\mathbf{r},t) \end{pmatrix}$$

$$Begoliubov-de Gennes equations (BdG): [k_{p}a] < 1 [a<0; k_{p}=(3\pi^{2}n)^{1/3}]$$

$$\mathcal{H}_{BdG} = \begin{pmatrix} h_{\uparrow}(\mathbf{r},t) - \mu_{\uparrow} & \Delta(\mathbf{r},t) \\ \Delta^{*}(\mathbf{r},t) & -h_{\downarrow}^{*}(\mathbf{r},t) + \mu_{\downarrow} \end{pmatrix}$$

$$h_{\sigma}(\mathbf{r},t) = -\hbar^{2}\nabla^{2}/2m + V_{\sigma}(\mathbf{r},t)$$

$$\Delta(\mathbf{r},t) = g\nu(\mathbf{r},t)$$

$$Pairing potential (order parameter) g = 4\pi\hbar^{2}a/m$$

$$\nu(\mathbf{r},t) = \frac{1}{2}\sum_{|E_{\eta}| < E_{c}} u_{\eta,\uparrow}(\mathbf{r},t) (f_{\beta}(-E_{\eta}) - f_{\beta}(E_{\eta}))$$

$$Anomalus density$$

$$BCS$$

$$BCS$$

$$Cooper pairs$$

$$Bogoliubov-de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes equations (BdG): [k_{p}a] < 1$$

$$Gogoliubov - de Gennes$$

Vortex solution: Bose gas \rightarrow GPE

$$egin{pmatrix} h_{\uparrow}(m{r}) - \mu_{\uparrow} & \Delta(m{r}) \ \Delta^*(m{r}) & -h^*_{\downarrow}(m{r}) + \mu_{\downarrow} \end{pmatrix} egin{pmatrix} u_{\eta}(m{r}) \ v_{\eta}(m{r}) \end{pmatrix} = E_{\eta} egin{pmatrix} u_{\eta}(m{r}) \ v_{\eta}(m{r}) \end{pmatrix}$$

Generic form of solutions for straight vortex $u_{\eta}(\mathbf{r}) = u_{nmk_z}(\rho)e^{im\varphi}e^{ik_z z}$ $v_{\eta}(\mathbf{r}) = v_{nmk_z}(\rho)e^{i(m+1)\varphi}e^{ik_z z}$

Individual particles have different *m* (Pauli principle) but

$$\frac{\langle \hat{L}_z \rangle}{N_{\rm Copper. pairs}} = \hbar$$

PHYSICS.WUT

In BCS regime:

$$E_{\pm n=0,m} \approx \frac{|\Delta|^2}{\varepsilon_F \frac{r_v}{\xi} \left(\frac{r_v}{\xi} + 1\right)} |m|$$

11

. . .0

$$egin{aligned} h_{\uparrow}(m{r}) & -\mu_{\uparrow} & \Delta(m{r}) \ \Delta^{*}(m{r}) & -h_{\downarrow}^{*}(m{r}) + \mu_{\downarrow} \end{aligned} egin{pmatrix} u_{\eta}(m{r}) \ v_{\eta}(m{r}) \end{pmatrix} &= E_{\eta} egin{pmatrix} u_{\eta}(m{r}) \ v_{\eta}(m{r}) \end{pmatrix} \end{aligned}$$

Generic form of solutions for straight vortex $u_{\eta}(\mathbf{r}) = u_{nmk_z}(\rho)e^{im\varphi}e^{ik_z z}$ $v_{\eta}(\mathbf{r}) = v_{nmk_z}(\rho)e^{i(m+1)\varphi}e^{ik_z z}$

In BCS regime:

$$E_{\pm n=0,m} \approx \frac{|\Delta|^2}{\varepsilon_F \frac{r_v}{\xi} \left(\frac{r_v}{\xi} + 1\right)} |m| \mp \frac{\Delta \mu}{2}$$

imbalance

PHYSICS.WUT

Population imbalance

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

 $\begin{pmatrix} h_{\uparrow}(\boldsymbol{r}) - \mu_{\uparrow} & \Delta(\boldsymbol{r}) \\ \Delta^{*}(\boldsymbol{r}) & -h_{\downarrow}^{*}(\boldsymbol{r}) + \mu_{\downarrow} \end{pmatrix} \begin{pmatrix} u_{\eta}(\boldsymbol{r}) \\ v_{\eta}(\boldsymbol{r}) \end{pmatrix} = E_{\eta} \begin{pmatrix} u_{\eta}(\boldsymbol{r}) \\ v_{\eta}(\boldsymbol{r}) \end{pmatrix}$

Generic form of solutions for straight vortex $u_{\eta}(\mathbf{r}) = u_{nmk_z}(\rho)e^{im\varphi}e^{ik_z z}$ $v_{\eta}(\mathbf{r}) = v_{nmk_z}(\rho)e^{i(m+1)\varphi}e^{ik_z z}$

In BCS regime:

$$E_{\pm n=0,m} \approx \frac{|\Delta|^2}{\varepsilon_F \frac{r_v}{\xi} \left(\frac{r_v}{\xi} + 1\right)} |m| \mp \frac{\Delta \mu}{2}$$

imbalance

Population imbalance

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

13

States in the vortex core with negative angular momentum m<0!

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$

BdG:
$$j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = \sum_{E_n > 0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$
BdG: $j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$, $n = \sum_{E_n>0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$
In general: $j = n_s v_s + n_n v_n$
superfluid normal
One should define n_s or n_n not
directly via the quantum wave-
function, but as the response to
the external perturbation,

like a "phase twist".

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$
BdG: $j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$, $n = \sum_{E_n>0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$
In general: $j = n_s v_s + n_n v_n$
superfluid normal
One should define n_s or n_n not
directly via the quantum wave-
function, but as the response to
the external perturbation,
like a "phase twist".

Example:

- 1. Start with the static solution with j=0,
- 2. Imprint the phase pattern $\phi(\mathbf{r}) \rightarrow \mathbf{v}_{s} = \hbar/M \nabla \phi$
- 3. Measure the current j (phase imprint should induce only superfow) $\rightarrow n_s = j/v_s$
- 4. Extract the normal density as $n_n = n n_s$

See also G. Orso & S. Stringari, Phys. Rev. A 109, 023301 (2024) for formal definition of the superfluid fraction **PHYSICS WUT**

Numerical result from BdG [ak_F=-0.70, T=0]

n: total density

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 n(x, y) [total density]

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 |\(\Delta(x,y)\)|

Numerical result from BdG [ak_F=-0.70, T=0]

n: total density

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 n_s(x, y) [superfluid] superfluid

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 [\Data(x, y)]

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

 $n_n(x, y)$ [normal]

normal

$\arg[\Delta]$

The vortex cores in Fermi superfluids are filled with the normal component, even at zero temperature!

Numerical result from finite temperature BdG [ak_F=-0.85]

Numerical result from finite temperature BdG [ak_F=-0.85]

condensate thermal cloud

Similar effect is observed for BEC at finite T

Fig from: A. J. Allen, Phys. Rev. A 87, 013630 (2013): Zaremba, Nikuni, and Griffin (ZNG) formalism

Internal vortex structure: does it matter when considering dynamics?

[1] W. J. Kwon, et.al., Nature 600, 64-69 (2021) Figs from [1]

LENS ⁶Li experiment (G. Roati's group) Unitary Fermi gas $(ak_F \rightarrow \infty)$ $T_{exp}=(0.3-0.4)T_c$

Movie from: Phys. Rev. Lett. 130, 043001 (2023)

Internal vortex structure: does it matter when considering dynamics?

[1] W. J. Kwon, et.al., Nature 600, 64-69 (2021) Figs from [1]

LENS ⁶Li experiment (G. Roati's group) Unitary Fermi gas $(ak_F \rightarrow \infty)$ $T_{exp}=(0.3-0.4)T_c$

Vortex Point Model (2D) or **Vortex Filament Model** (3D):

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = \boldsymbol{F}_{\text{Magnus}} +$$

+ F_{boundry} + $F_{\text{dissipative+...}}$

Movie from: Phys. Rev. Lett. 130, 043001 (2023)

Vortex mass in most cases the vortices are regarded as massless particles m_v≈0

$$m_V^{\downarrow} \frac{d^2 r_V}{dt^2} = F_{\text{Magnus}} + F_{\text{boundry}} + F_{\text{dissipative+...}}$$

Vortex mass in most cases the vortices are regarded as massless particles $m_v \approx 0$

-0

$$\begin{split} & \stackrel{+}{m_V} \frac{d^2 r_V}{dt^2} = F_{\text{Magnus}} + F_{\text{boundry}} + F_{\text{dissipative}+...} \\ & \stackrel{\vee}{\int_{K}} \frac{1}{F_{\text{Magnus}} = n_s \kappa \hat{z} \times (v_V - v_s)} \\ & \quad \text{Biot-Savart Law in 2D} \\ & \quad \text{Superflow is generated by all} \\ & \quad \text{oher vortices} \\ & \quad v_s(\mathbf{r}) = \frac{\kappa}{2\pi} \sum_{j \neq i} \frac{\hat{z} \times (\mathbf{r} - \mathbf{r}_j)}{|\mathbf{r} - \mathbf{r}_j|^2} \end{split}$$

Vortex mass

Vortex mass

Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

- A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);
- J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);

A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

A. Richaud et al, arXiv:2410.12417

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

If $\mathbf{m}_v = \mathbf{0}$: first order PDE $r(t) = r_0$ (circular orbit)

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

- A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);
- J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);

A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

A. Richaud et al, arXiv:2410.12417

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

If $\mathbf{m}_v = \mathbf{0}$: first order PDE $r(t) = r_0$ (circular orbit)

If $\mathbf{m}_{v} > 0$: second order PDE: $r(t) = r_{0} + A(v_{0}, \mathfrak{m}) \sin(\omega(\mathfrak{m})t)$ $\mathfrak{m} = \frac{m_{v}}{M_{s}}, \quad M_{s} = \int n_{s}(r) dr$ (+ transverse oscillations)

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);

J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);

A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

A. Richaud et al, arXiv:2410.12417

Blue: numerical result for distance of vortex core from the disk center; Orange: fit of sin function

- Dynamics
- Mass extracted from measurement of ω (fit of the point vortex model trajectory to data)

PHYSICS.WUT

 $\ \, N_n/N_s \qquad {\rm Mass\ extracted\ as\ amount\ of\ normal\ component\ in\ the\ vortex\ core}$

Dashed line:

$$\mathfrak{m} = \alpha \times (\xi/R)^2 \qquad \xi = \frac{\hbar^2 k_F}{m\pi\bar{\Delta}},$$

vortex mass is proportional to the area of the core ($\propto \xi^2$, where ξ is the coherence or healing length)

$$r(t) = r_0 + A(v_0, \mathfrak{m}) \sin(\omega(\mathfrak{m})t)$$

The sensitivity of the vortex trajectory with respect to the initial velocity is a clear indicator that the equation of motion is of the second order

As expected,

temperature.

the vortex mass grows

as we increase the

 $-T/T_c = 0.2$

 $-T/T_{c} = 0.3$

r/R

0.5

0 L 0

$$r(t) = r_0 + A(v_0, \mathfrak{m}) \sin(\omega(\mathfrak{m})t)$$

The sensitivity of the vortex trajectory with respect to the initial velocity is a clear indicator that the equation of motion is of the second order

Dissipative effects $\mathbf{F}_{\text{dissipative}} = -D(\mathbf{v}_V - \mathbf{v}_n) - D'\hat{\mathbf{z}} \times (\mathbf{v}_V - \mathbf{v}_n)$

GPE (Bose): dissipation via emission of phonons (sound)

Dissipative effects $\mathbf{F}_{\text{dissipative}} = -D(\mathbf{v}_V - \mathbf{v}_n) - D'\hat{\mathbf{z}} \times (\mathbf{v}_V - \mathbf{v}_n)$

GPE (Bose): dissipation via emission of phonons (sound)

BdG (Fermi):

 \rightarrow in-core excitations (present event at T=0)

M.A. Silaev, Universal Mechanism of Dissipation in Fermi Superfluids at Ultralow Temperatures, Phys. Rev. Lett. 108, 045303 (2012)

 \rightarrow dissipation mechanism via excitations of the vortex core

Dissipative effects $\mathbf{F}_{\text{dissipative}} = -D(\mathbf{v}_V - \mathbf{v}_n) - D'\hat{\mathbf{z}} \times (\mathbf{v}_V - \mathbf{v}_n)$

GPE (Bose): dissipation via emission of phonons (sound)

BdG (Fermi):

 \rightarrow in-core excitations (present event at T=0)

M.A. Silaev, Universal Mechanism of Dissipation in Fermi Superfluids at Ultralow Temperatures, Phys. Rev. Lett. 108, 045303 (2012)

 \rightarrow dissipation mechanism via excitations of the vortex core

 \rightarrow vortex-core – bulk interactions (T>0)

B. Kopnin, Vortex dynamics and mutual friction in superconductors and Fermi superfluids, Rep. Prog. Phys. 65, 1633 (2002)

 \rightarrow dissipation mechanism via scattering of thermal excitations on the CdGM states.

Dissipative effects: results of time-dependent BdG

PHYSICS.WUT

(it can be interpreted as effective increase of the vortex core temperature)

A. Barresi, A. Boulet, P. Magierski, G. Wlazłowski, Phys. Rev. Lett. 130, 043001 (2023)

Dissipative effects: measurements for strongly interacting Fermi gas & numerical predictions by SLDA [N. Grani et al, arXiv:2503.21628]

- → ultracold gas of ⁶Li atoms confined by disk-shaped trap akF=∞ (unitary Fermi gas)
- → antivortex is pinned by extarnal potential (laser beam) in center of the disk
- \rightarrow vortex is allowed to orbit around the antivortex
- → the vortex trajectory is measured as a function of time for different temperatures
- → fit of Vortex Point Model trajectory with respect of D and D' ($m_v \approx 0$).

Dissipative effects: measurements for strongly interacting Fermi gas & numerical predictions by SLDA [N. Grani et al, arXiv:2503.21628]

BdG-type equations & Computational physics

System: *unitary Fermi gas* 3D simulation on lattice 100³

number of atoms = 26,790 number of quasi-particle states = 582,898 number of PDEs = 1,165,796 Quantum turbulence in the unitary Fermi gas PNAS Nexus, pgae160 (2024)

Computation on spatial grid

PHYSICS.WUT

(the largest system in 3D we considered had 108,532 atoms)

Warsaw University W-SLEA Toolkit of Technology W-BSk Toolkit

Speed-up calculations by exploiting High Performance Computing

W-SLDA Toolkit

Self-consistent solver of mathematical problems which have structure formally equivalent to Bogoliubov-de Gennes equations. static problems: st-wslda

$$\begin{pmatrix} h_a(\boldsymbol{r}) - \mu_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b^*(\boldsymbol{r}) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix} = E_n \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix}$$

time-dependent problems: td-wslda

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_a(\boldsymbol{r},t)-\mu_a & \Delta(\boldsymbol{r},t)\\\Delta^*(\boldsymbol{r},t) & -h_b^*(\boldsymbol{r},t)+\mu_b\end{pmatrix}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix}$$

ROCm

CUDA

Extension to nuclear matter in neutron stars

Unified solvers for static and

time-dependent problems

Dimensionalities of problems: 3D, 2D and 1D Computing

	Depending on the type
	static codes: stand
	time-dependent co
High Performance	To learn more about a

W-SLDA is designed to exploit capabilities of leadership-class supercomputers. e of the code the toolkit can be executed on: ard CPU machines. GPU accelerated machines. odes: only GPU accelerated machines. computer that you need for calculations see Requirements Integration with VisIt: visualization, animation and analysis tool

Speed-up calculations by exploiting High Performance Computing

Functionals for studies of BCS and unitary regimes

We release the data generated by the W-SLDA Toolkit to maximize the knowledge gained from simulations run on costly HPC systems and to share research opportunities with other groups.

Example: (approx 70GB of raw data)

September 25, 2023 (v1) Dataset 🔒 Open

Quantum turbulence in superfluid Fermi gas: results of numerical simulation

Gabriel Wlazłowski (); Michael McNeil Forbes (); Saptarshi Rajan Sarkar (); and 2 others

SUMMARY

Microscopic simulations across whole BCS-BEC crossover are presently feasible:

TDBdG \rightarrow BCS regime;

- TDSLDA \rightarrow strong interaction;
- $\mathsf{GPE} \quad \rightarrow \mathsf{BEC} \text{ regime}$
- Many properties of quantized vortices are determined by the topology of the order parameter
- Vortices acquire internal structure in Fermi superfluids
 - → origin of vortex mass (normal component in the vortex core)
 - → origin of new dissipation mechanism (excitations of the vortex core, ...)

Collaborators:

P. Magierski, D. Pęcak, M. Tylutki, A. Makowski, A. Barresi, E. Alba, A. Zdanowicz, M. Śliwiński, D. Lazarou(WUT); B. Tüzemen (IFPAN)
M. Forbes, S. Sarkar (WSU); A. Bulgac (UW);
A. Richaud, P. Massignan (UPC); M. Caldara, M. Capone (SISSA)
G. Roati, F. Scazza, G. Del Pace; D. Hernández-Rajkov, N. Grani, C. Daix;
M. Frómeta Fernández (LENS);
P. Pieri (University of Bologna); M. Pini (University of Augsburg);
A. Marek (MPCDF); M. Szpindler (Cyfronet);

Thank you

Contact: gabriel.wlazlowski@pw.edu.pl http://wlazlowski.fizyka.pw.edu.pl

W-SLDA Toolkit

Synergy: theory & experiment

Experiments:

Workhorse for:

- Solid state physics...
- Quantum chemistry...
- Nuclear physics...
- ...atomic gases...

- DFT is in principle exact theory Hohenberg-Kohn theorem (1964) implies that $\langle O \rangle = \langle \Psi[\rho] | O | \Psi[\rho] \rangle = O[\rho]$
- ... solving Schrödinger equation \leftrightarrow minimization of the energy density $E[\rho]...$

PHYSICS.WUT

- ... however no mathematical recipe how to construct $E[\rho]$.
- In practice we postulate the functional form dimensional arguments, renormalizability, Galilean invariance, and symmetries
- DFT allows to include "beyond mean-field" effects, while keeping the numerical cost similar to mean-field method (here mean-field=BdG)

 $\Delta(\boldsymbol{r},t) = g(n)\boldsymbol{v}$

density modes and pairing modes

SLDA-type functional

$$E_0 = \int \mathcal{E}[n_{\sigma}(\boldsymbol{r}), \tau_{\sigma}(\boldsymbol{r}), \boldsymbol{j}_{\sigma}, \nu(\boldsymbol{r})] d\boldsymbol{r}$$

normal density

$$n_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} |v_{n,\sigma}(\boldsymbol{r})|^2 f_{\beta}(-E_n),$$

kinetic density

$$\tau_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} |\nabla v_{n,\sigma}(\boldsymbol{r})|^2 f_{\beta}(-E_n),$$

current density

$$\boldsymbol{j}_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} \operatorname{Im}[v_{n,\sigma}(\boldsymbol{r}) \nabla v_{n,\sigma}^*(\boldsymbol{r})] f_{\beta}(-E_n),$$

anomalous density

$$\nu(\boldsymbol{r}) = \frac{1}{2} \sum_{|E_n| < E_c} \left[u_{n,a}(\boldsymbol{r}) v_{n,b}^*(\boldsymbol{r}) - u_{n,b}(\boldsymbol{r}) v_{n,a}^*(\boldsymbol{r}) \right] f_\beta(-E_n)$$
Energy cut-off scale (need for regularization)

Superfluid Local Density Approximation

The Fermi-Dirac distribution function

Denisties are **parametrized** via Bogoliubov quasiparticle wave functions

quasiparticle = mixture of hole particle
$$\varphi_\eta({m r},t) = [u_\eta({m r},t),v_\eta({m r},t)]^T$$

$$\int \varphi_{\eta}^{\dagger}(\boldsymbol{r},t)\varphi_{\eta'}(\boldsymbol{r},t) \, d^{3}\boldsymbol{r} = \delta_{\eta,\eta'}$$

+ orthonormality condition (Pauli principle)

Additional density required by DFT theorem for systems with broken U(1) symmetry

SLDA (and BdG) allows for solutions: $n \neq 0$ and v=0

Methods	BEC <		\rightarrow BCS
	8 00		
	diatomic molecules	strongly interacting pair	rs Cooper pairs
	GPE	SLDA	BdG
dof	Dimers (bosons)	Fermions	Fermions
wave- function	Condensate wave-function $\psi(\mathbf{r},t)$	Quasiparticle states $\phi_n(r,t) = \{u_n(r,t), v_n(r,t)\}$	$ \begin{array}{l} \text{Quasiparticle states} \\ \phi_n(r,t) \!=\! \{u_n(r,t),\!v_n(r,t)\} \end{array} \end{array} \\$
Dynamics depends on	$\mathbf{n} = \psi ^2$	n – normal density, v – anomalus density j – current density	ν – anomalus density (all interaction effects are modeled by pairing term)

Vortex structure

Majority component accumulates in the core.

