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Microscopic properties of quantum Microscopic properties of quantum 
vortices across BCS-BEC crossovervortices across BCS-BEC crossover

Nature Phys. 7, 473 (2011)

Quantization of circulation

… for straight vortex line it implies
density

Many properties of 
quantum vortices 
originate from the 

topology of the order 
parameter, but not 

all...
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Weak attraction induces 
correlations: Cooper pairs

Strong attraction: Cooper pairs 
become comparable in size with the 

interparticle distance.

Bound states are created: dimers. Effective 
dimer-dimer interaction is weak.  

Source: M. W. Zwierlein, J. R. Abo-Shaeer, A. 
Schirotzek, C. H. Schunck, and W. Ketterle, 
Nature 435, 1047 (2005).
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Gross- Pitaevskii equation (GPE):n1/3add<<1

mass of dimer 
= 2m

Depends on 
dimer-dimer 
scattering 
length add

The nonlinear Schrodinger 
equation is regarded as the 

one that captures 
quantum vortex properties 

at the microscopic level.
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Gross- Pitaevskii equation (GPE):n1/3add<<1 The nonlinear Schrodinger 
equation is regarded as the 

one that captures 
quantum vortex properties 

at the microscopic level.

Definition of 
the superfluid velocity
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Bogoliubov-de Gennes equations (BdG):|kFa|<<1   [a<0;  kF=(3π2n)1/3]
Single particle hamiltonianPairing potential (order parameter)

Anomalus density

Pauli exclusion principle

amplitude probability
hole            particle

Pauli exclusion principle

amplitude probability
hole            particle
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Vortex solution: Bose gas → GPE

~ξ

Order parameter:
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Vortex solution: Fermi gas → BdG

Order parameter:
   not related directly to density

Occupation of Caroli–de Gennes–Matricon(CdGM) states contributes particle density inside the core.
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Vortex solution: Fermi gas → BdG

Order parameter:
   not related directly to density

Occupation of Caroli–de Gennes–Matricon(CdGM) states contributes particle density inside the core.

ga
p

“minigap”:
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Vortex solution: Fermi gas
ga

p

“minigap”:
BCS: many CdGM states
→ small depletion of density
     in the core 

UFG: a few CdGM states
→ significant depletion
BEC: no CdGM states:
→ empty vortex core

R. Sensarma, M. Randeria, and T.-L. Ho, 
Phys. Rev. Lett. 96, 090403 (2006).

 

interaction

Vortex structure within QMC:
L Madeira, A Lovato, F Pederiva, KE Schmidt, 
Phys. Rev. A 95, 053603 (2017); 
L Madeira, S Gandolfi, KE Schmidt, VS Bagnato, 
Phys. Rev. C 100, 014001 (2019)
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Generic form of solutions for straight vortex

Individual particles 
have different m 
(Pauli principle) but

In BCS regime:

P. Magierski, G. Wlazłowski, A. Makowski, K. Kobuszewski, Phys. Rev. A 106, 033322 (2022)
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Generic form of solutions for straight vortex

In BCS regime:

 

imbalance

Population imbalance

P. Magierski, G. Wlazłowski, A. Makowski, K. Kobuszewski, Phys. Rev. A 106, 033322 (2022)
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Generic form of solutions for straight vortex

In BCS regime:

 

imbalance

Population imbalance

States in the vortex core with negative angular momentum m<0!
P. Magierski, G. Wlazłowski, A. Makowski, K. Kobuszewski, Phys. Rev. A 106, 033322 (2022)
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1/r

BCS regime

 

imbalance

Controls circulation
inside the core

P. Magierski, G. Wlazłowski, A. Makowski, K. Kobuszewski, Phys. Rev. A 106, 033322 (2022)

Majority component 
accumulates in the core. 
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GPE:

BdG:
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GPE:

BdG:

superfluid       normal 

One should define ns or nn not 
directly via the quantum wave-
function, but as the response to 

the external perturbation, 
like a “phase twist”. 

In general:
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GPE:

BdG:

See also G. Orso  & S. Stringari, Phys. Rev. A 109, 023301 (2024)
for formal definition of the superfluid fraction

superfluid       normal 

One should define ns or nn not 
directly via the quantum wave-
function, but as the response to 

the external perturbation, 
like a “phase twist”. 

Example:1. Start with the static solution with j=0, 2. Imprint the phase pattern ϕ(r) → vs=ℏ/M ∇ϕ 3. Measure the current j (phase imprint should induce only superfow) → ns = j/vs 4. Extract the normal density as nn = n - ns

In general:
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Numerical result from BdG [akF=-0.70, T=0]   n: total density                                  |Δ|                                       arg[Δ]
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Numerical result from BdG [akF=-0.70, T=0]

The vortex cores in 
Fermi superfluids 

are filled with 
the normal 

component, even at 
zero temperature! 

+

   n: total density                                  |Δ|                                       arg[Δ]

superfluid                         normal
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no
rm

al
 d

en
si

ty

Distance from the vortex core

Numerical result from finite temperature BdG [akF=-0.85]

Temperature enhances 
the normal component 
localized at the vortex

core first...

… and, for 
sufficiently large 

temperatures, 
also in the bulk

temperature
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Distance from the vortex core

Numerical result from finite temperature BdG [akF=-0.85]

Temperature enhances 
the normal component 
localized at the vortex

core first...

… and, for 
sufficiently large 

temperatures, 
also in the bulk

Similar effect is observed 
for BEC at finite T

Fig from:  A. J. Allen, Phys. 
Rev. A 87, 013630 (2013): 
Zaremba, Nikuni, and Griffin 
(ZNG) formalism

temperature

condensate
 

thermal cloud
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[here n (density) ↔ ρ]

ρCdGM significantly departs from ρn… 
 

→ the need to elucidate the relationship 
between the macroscopic quantity ρn 
and the microscopic structure of the 
quasiparticle states 

A. Richaud et al, 
arXiv:2410.12417

m
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Internal vortex structure: 
     does it matter when considering dynamics?

Figs from [1]

Texp=(0.3-0.4)Tc

Movie from: Phys. Rev. Lett. 130, 043001 (2023)

 
[1] W. J. Kwon, et.al., Nature 600, 64-69 (2021)

LENS 6Li experiment (G. Roati’s group)
Unitary Fermi gas (akF→∞)
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Internal vortex structure: 
     does it matter when considering dynamics?

Figs from [1]

Texp=(0.3-0.4)Tc

Movie from: Phys. Rev. Lett. 130, 043001 (2023)

 
[1] W. J. Kwon, et.al., Nature 600, 64-69 (2021)

LENS 6Li experiment (G. Roati’s group)
Unitary Fermi gas (akF→∞)

Vortex Point Model (2D) or Vortex 
Filament Model (3D):
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Vortex Point Model
Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass
in most cases the vortices are 

regarded as massless particles mV≈0
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Vortex Point Model
Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass
in most cases the vortices are 

regarded as massless particles mV≈0

Biot–Savart Law in 2D
Superflow is generated by all 

other vortices
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Vortex Point Model
Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass
in most cases the vortices are 

regarded as massless particles mV≈0

Flow must be tangential to 
the boundry: 

Can be modeled by means of 
image vortices.

Biot–Savart Law in 2D
Superflow is generated by all 

other vortices
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Vortex Point Model
Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass
in most cases the vortices are 

regarded as massless particles mV≈0

Flow must be tangential to 
the boundry: 

Can be modeled by means of 
image vortices.

Interaction with nn 
In general, two components: 

tangential and transverse to the 
relative flow of the n component

Biot–Savart Law in 2D
Superflow is generated by all 

other vortices



29

Vortex Point Model
Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass
in most cases the vortices are 

regarded as massless particles mV≈0

Flow must be tangential to 
the boundry: 

Can be modeled by means of 
image vortices.

Interaction with nn 
In general, two components: 

tangential and transverse to the 
relative flow of the n component

Biot–Savart Law in 2D
Superflow is generated by all 

other vortices

Properties 
affected by 
the internal 

vortex 
structure
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Vortex mass

A. Richaud et al, arXiv:2410.12417

Consider: quantum vortex at disc of radius R, 
zero temperature limit (no dissipative forces)

generated by an oppositely-charged image vortex
 located at position                     

which ensures the no-flow condition across the boundary. 

Related works: 
T. Simula, Phys. Rev. A 97, 023609 (2018); 
A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021); 
J. D’Ambroise et al, Phys. Rev. E 111, 034216 (2025); 
A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024); 
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Vortex mass

A. Richaud et al, arXiv:2410.12417

Consider: quantum vortex at disc of radius R, 
zero temperature limit (no dissipative forces)

generated by an oppositely-charged image vortex
 located at position                     

which ensures the no-flow condition across the boundary. 

If  mV=0: first order PDE:                              (circular orbit)  

Related works: 
T. Simula, Phys. Rev. A 97, 023609 (2018); 
A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021); 
J. D’Ambroise et al, Phys. Rev. E 111, 034216 (2025); 
A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024); 
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Vortex mass

A. Richaud et al, arXiv:2410.12417

Consider: quantum vortex at disc of radius R, 
zero temperature limit (no dissipative forces)

generated by an oppositely-charged image vortex
 located at position                     

which ensures the no-flow condition across the boundary. 

If  mV=0: first order PDE:                              (circular orbit)  

If  mV>0: second order PDE:

                                                                              (+ transverse 
                                                                                    oscillations )     
                         

Related works: 
T. Simula, Phys. Rev. A 97, 023609 (2018); 
A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021); 
J. D’Ambroise et al, Phys. Rev. E 111, 034216 (2025); 
A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024); 
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Blue: numerical result for distance of vortex core from the disk center; Orange: fit of sin function

Vortex mass: numerical simulation with time-dependent BdG
A. Richaud M. Caldara, M. Capone, P. Massignan, G. Wlazłowski, arXiv:2410.12417
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Blue: numerical result for distance of vortex core from the disk center; Orange: fit of sin function

Mass extracted from measurement of ω 
(fit of the point vortex model trajectory to data)

Mass extracted as amount of normal 
component in the vortex core

Dashed line: 

vortex mass is proportional to the area of the core 
(  ∝ ξ2, where  is the coherence or healing length)ξ

Vortex mass: numerical simulation with time-dependent BdG
A. Richaud M. Caldara, M. Capone, P. Massignan, G. Wlazłowski, arXiv:2410.12417
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Vortex mass: numerical simulation with time-dependent BdG
A. Richaud M. Caldara, M. Capone, P. Massignan, G. Wlazłowski, arXiv:2410.12417

The sensitivity of the vortex trajectory 
with respect to the initial velocity is a 
clear indicator that the equation of 
motion is of the second order
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Vortex mass: numerical simulation with time-dependent BdG
A. Richaud M. Caldara, M. Capone, P. Massignan, G. Wlazłowski, arXiv:2410.12417

The sensitivity of the vortex trajectory 
with respect to the initial velocity is a 
clear indicator that the equation of 
motion is of the second order

As expected, 
the vortex mass grows 
as we increase the 
temperature.
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Dissipative effects
GPE (Bose): dissipation via emission of phonons (sound)
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Dissipative effects

M.A. Silaev, Universal Mechanism of Dissipation in Fermi 
Superfluids at Ultralow Temperatures, Phys. Rev. Lett. 108, 
045303 (2012)→ dissipation mechanism via excitations of the vortex core 

GPE (Bose): dissipation via emission of phonons (sound)

BdG (Fermi): 
→ in-core excitations (present event at T=0)                

Source: Phys. Rev. Lett. 108, 045303 (2012)
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Dissipative effects

M.A. Silaev, Universal Mechanism of Dissipation in Fermi 
Superfluids at Ultralow Temperatures, Phys. Rev. Lett. 108, 
045303 (2012)→ dissipation mechanism via excitations of the vortex core 

GPE (Bose): dissipation via emission of phonons (sound)

BdG (Fermi): 
→ in-core excitations (present event at T=0)                → vortex-core – bulk interactions (T>0)

→ dissipation mechanism via scattering of thermal excitations on the CdGM states. 

Source: Phys. Rev. Lett. 108, 045303 (2012)

B. Kopnin, Vortex dynamics and mutual friction in supercondu-
ctors and Fermi superfluids, Rep. Prog. Phys. 65, 1633 (2002)

Source: arXiv:2503.21628



A. Barresi, A. Boulet, P. Magierski, G. Wlazłowski, Phys. Rev. Lett. 130, 043001 (2023)

→ the dissipation due to CdGM states is detected in BCS regime 
        (it can be interpreted as effective increase of the vortex core temperature)

Vortex core density

1/akF=-1

3 1 3 1

Dissipation 
during the collision 

is reflected in 
df/di < 1.

Dissipative effects: results of time-dependent BdG
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Dissipative effects: measurements for strongly interacting Fermi gas & numerical 
predictions by SLDA [N. Grani et al, arXiv:2503.21628]

T/Tc = 0.36(4) (blue); T/Tc = 0.50(6) (red)

→ ultracold gas of 6Li atoms confined by disk-shaped trap
    akF=∞ (unitary Fermi gas)

→ antivortex is pinned by extarnal potential (laser beam) 
     in center of the disk

→ vortex is allowed to orbit around the antivortex

→ the vortex trajectory is measured as a function of time
    for different temperatures

→ fit of Vortex Point Model trajectory with respect of 
    D and D’ (mV≈0). 



42

Dissipative effects: measurements for strongly interacting Fermi gas & numerical 
predictions by SLDA [N. Grani et al, arXiv:2503.21628]

T/Tc = 0.36(4) (blue); T/Tc = 0.50(6) (red)

SLDA

SLDA – Extension of BdG 
equations  to strongly interacting 
regime (formally the same structure of 
equations as for time-dependent BdG)

Exp:
LENS

→ interplay between vortex-bound quasiparticles 
    and delocalized thermal excitations drives the dissipation 

Kopnin
(2002)
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System: unitary Fermi gas
3D simulation on lattice 1003

number of atoms = 26,790
number of quasi-particle states = 582,898
number of PDEs = 1,165,796

Quantum turbulence 
in the unitary Fermi gas
PNAS Nexus, pgae160 (2024)

(the largest system in 3D we considered had 108,532 atoms)

Computation 
on spatial grid

BdG-type equations & Computational physics




44http://wslda.fizyka.pw.edu.pl/ 

We release the data generated by the W-SLDA Toolkit to maximize the knowledge gained from 
simulations run on costly HPC systems and to share research opportunities with other groups.

Example: (approx 70GB of raw data)

http://wslda.fizyka.pw.edu.pl/
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SUMMAR Y
Microscopic simulations across whole BCS-BEC 
crossover are presently feasible: 

TDBdG     → BCS regime; 
TDSLDA   → strong interaction; 
GPE          → BEC regime 

Many properties of quantized vortices are determined by 
the topology of the order parameter

Vortices acquire internal structure in Fermi superfluids 
→ origin of vortex mass 
       (normal component in the vortex core)
→ origin of new dissipation mechanism 
       (excitations of the vortex core, ...)

D
F
T
 
c
o
mhttps://wslda.fizyka.pw.edu.pl/ 

Collaborators: 
 

P. Magierski, D. Pęcak, M. Tylutki, A. Makowski, A. Barresi, E. Alba,  A. Zdanowicz,  M. 
Śliwiński, D. Lazarou(WUT);  B. Tüzemen (IFPAN)
M. Forbes, S. Sarkar (WSU);  A. Bulgac (UW);
A. Richaud, P. Massignan (UPC); M. Caldara, M. Capone (SISSA)
G. Roati, F. Scazza, G. Del Pace; D. Hernández-Rajkov, N. Grani, C. Daix; 
M. Frómeta Fernández (LENS);
P. Pieri (University of Bologna); M. Pini (University of Augsburg);
A. Marek (MPCDF);  M. Szpindler (Cyfronet);

    Thank you
Contact:
gabriel.wlazlowski@pw.edu.pl
http://wlazlowski.fizyka.pw.edu.pl

https://wslda.fizyka.pw.edu.pl/
mailto:gabriel.wlazlowski@pw.edu.pl
http://wlazlowski.fizyka.pw.edu.pl/
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Synergy: theory & experiment

Attractive 
inter-particle 

interaction

Experiments:
~exp.

 limit
ation

Regime 
of validity
of BdG theory 

(note: BdG for uniform system = BCS theory) 
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Methods

Density Functional Theory: Superfluid Local Density Approximation (SLDA)
Workhorse for:Solid state physics...Quantum chemistry...Nuclear physics...…atomic gases…
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Methods

Density Functional Theory: Superfluid Local Density Approximation (SLDA)
DFT is in principle exact theory Hohenberg-Kohn theorem (1964) implies that … solving Schrödinger equation ↔ minimization of the energy density E[ρ]...… however no mathematical recipe how to construct E[ρ].In practice we postulate the functional form dimensional arguments, renormalizability, Galilean invariance, and symmetriesDFT allows to include “beyond mean-field” effects, while keeping the numerical cost similar to mean-field method (here mean-field=BdG)

`
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Methods

Density Functional Theory: Superfluid Local Density Approximation (SLDA)
Formally equations are the same as for BdG:

Effective mass Potential simulating 
effects of interactions

Current corrections

SLDA
SLDA
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Methods

Density Functional Theory: Superfluid Local Density Approximation (SLDA)
Formally equations are the same as for BdG:

Effective mass Potential simulating 
effects of interactions

Current corrections

Explicit coupling between 
density modes and 

pairing modes



SLDA-type functional

The Fermi-Dirac 
distribution function

Denisties are parametrized via Bogoliubov 
quasiparticle wave functions

quasiparticle = mixture of
                             hole           particle 

Energy cut-off scale (need for regularization)

+ orthonormality condition (Pauli principle)

Additional density required by DFT 
theorem for systems with broken U(1) 
symmetry

SLDA (and BdG) allows for solutions: n≠0 and ν=0
                                 → Cooper pair breaking → effectively normal component

Superfluid Local 
Density Approximation



52

Methods

GPE SLDA BdG
dof Dimers

(bosons)
Fermions Fermions

wave-
function

Condensate wave-
function ψ(r,t) Quasiparticle states 

φn(r,t)={un(r,t),vn(r,t)} Quasiparticle states 
φn(r,t)={un(r,t),vn(r,t)}

Dynamics 
depends 
on

n=|ψ|2 n – normal density,
ν – anomalus density

j – current density 

ν – anomalus density
 

(all interaction effects are 
modeled by pairing term)
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Vortex structure Majority component 
accumulates in the core. 
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